Definitions and key facts for section 2.3

The invertible matrix theorem

Let A be a square $n \times n$ matrix. Then the following statements are equivalent. That is, for a given A, the statements are either all true, or all false.

- 1. A is an invertible matrix.
- 2. A is row equivalent to the $n \times n$ identity matrix.
- 3. A has n pivot positions.
- 4. The equation $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- 5. The columns of A form a linearly independent set.
- 6. The linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ is one-to-one.
- 7. The equation $A\mathbf{x} = \mathbf{b}$ has at least one solution for each \mathbf{b} in \mathbb{R}^n .
- 8. The columns of A span \mathbb{R}^n .
- 9. The linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ maps \mathbb{R}^n onto \mathbb{R}^n .
- 10. There is an $n \times n$ matrix C such that CA = I.
- 11. There is an $n \times n$ matrix D such that AD = I.
- 12. A^T is an invertible matrix.
- 13. The columns of A form a basis of \mathbb{R}^n .
- 14. Col $A = \mathbb{R}^n$
- 15. dim Col A = n
- 16. rank A = n
- 17. Nul $A = \{0\}$
- 18. dim Nul A = 0
- 19. The number 0 is *not* an eigenvalue of A.
- 20. The determinant of A is *not* zero.
- 21. $(\operatorname{Col} A)^{\mid} = \{\mathbf{0}\}$
- 22. (Nul A) $| = \mathbb{R}^n$
- 23. $(\operatorname{Row} A)^{\mid} = \mathbb{R}^n$
- 24. A has n nonzero singular values

Time will require us to exclude a few of these statements from discussion. In particular, statements 21-24 will not be covered in class and statements 14-18 will only be covered if time permits.

A linear transformation $T: \mathbb{R}^n \to \mathbb{R}^n$ is **invertible** if there exists a function $S: \mathbb{R}^n \to \mathbb{R}^n$ such that

$$S(T(\mathbf{x})) = \mathbf{x}$$
 and $T(S(\mathbf{x})) = \mathbf{x}$ for all \mathbf{x} in \mathbb{R}^n .

One can show that S is in this case unique and thus we may call it the **inverse** of T.

Fact: Let $T : \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation with standard matrix A. Then T is invertible if and only if A is an invertible matrix. Moreover, if S is the inverse of T, then its standard matrix is A^{-1} .