Definitions and key facts for section 2.3

The invertible matrix theorem

Let A be a square $n \times n$ matrix. Then the following statements are equivalent. That is, for a given A, the statements are either all true, or all false.

1. A is an invertible matrix.
2. A is row equivalent to the $n \times n$ identity matrix.
3. A has n pivot positions.
4. The equation $A \mathbf{x}=\mathbf{0}$ has only the trivial solution.
5. The columns of A form a linearly independent set.
6. The linear transformation $\mathbf{x} \mapsto A \mathbf{x}$ is one-to-one.
7. The equation $A \mathbf{x}=\mathbf{b}$ has at least one solution for each \mathbf{b} in \mathbb{R}^{n}.
8. The columns of A span \mathbb{R}^{n}.
9. The linear transformation $\mathbf{x} \mapsto A \mathbf{x}$ maps \mathbb{R}^{n} onto \mathbb{R}^{n}.
10. There is an $n \times n$ matrix C such that $C A=I$.
11. There is an $n \times n$ matrix D such that $A D=I$.
12. A^{T} is an invertible matrix.
13. The columns of A form a basis of \mathbb{R}^{n}.
14. $\operatorname{Col} A=\mathbb{R}^{n}$
15. $\operatorname{dim} \operatorname{Col} A=n$
16. $\operatorname{rank} A=n$
17. Nul $A=\{0\}$
18. $\operatorname{dim} \operatorname{Nul} A=0$
19. The number 0 is not an eigenvalue of A.
20. The determinant of A is not zero.
21. $(\operatorname{Col} A)^{\mid}=\{0\}$
22. $(\operatorname{Nul} A)^{\mid}=\mathbb{R}^{n}$
23. $(\text { Row } A)^{\mid}=\mathbb{R}^{n}$
24. A has n nonzero singular values

Time will require us to exclude a few of these statements from discussion. In particular, statements 21-24 will not be covered in class and statements $14-18$ will only be covered if time permits.

A linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is invertible if there exists a function $S: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ such that

$$
S(T(\mathbf{x}))=\mathbf{x} \text { and } T(S(\mathbf{x}))=\mathbf{x} \text { for all } \mathbf{x} \text { in } \mathbb{R}^{n} .
$$

One can show that S is in this case unique and thus we may call it the inverse of T.
Fact: Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear transformation with standard matrix A. Then T is invertible if and only if A is an invertible matrix. Moreover, if S is the inverse of T, then its standard matrix is A^{-1}.

